

Full Stokes inversions with scattering polarization: 1D and 3D

T. del Pino Alemán^{1,2}, J. Štěpán³, and H. Li⁴

¹ Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain

² Departamento de Astrofísica, Univ. de La Laguna, La Laguna, Tenerife E-38200, Spain

³ Astronomical Institute of the Czech Academy of Sciences, 25165 Ondřejov, Czech Republic

⁴ State Key Laboratory of Solar Activity and Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, Peoples Republic of China

contact e-mail: *tanausu@iac.es*

Inversion techniques are widely applied in the analysis of spectropolarimetric observations to infer the thermal and magnetic properties of the solar atmosphere. Over the past decades, these techniques have become increasingly more sophisticated, building up in complexity and scope. In this talk, I will highlight some of these latest advances, with a particular focus on the exploitation of scattering polarization and the Hanle effect for magnetic field diagnostics. Since these effects are intrinsically sensitive to the geometry of the radiation field, their proper treatment requires going beyond one-dimensional modeling. I will discuss development in both one-dimensional and three-dimensional approaches and the challenges they still present for quantitative inference.