

Non-LTE synthesis and inversion of the Mg I 12.32 μm line

Yuchuan Wu^{1,2}, Wenxian Li^{1,3}, Xianyong Bai^{1,2,3}, Feng Chen^{4,5}, Hao Li³, and Yuanyong Deng^{1,2,3}

¹ State Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China

² School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, China

³ State Key Laboratory of Solar Activity and Space Weather, National Space Science Center, Chinese Academy of Sciences

⁴ School of Astronomy and Space Science, Nanjing University, Nanjing, China

⁵ Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, China

contact e-mail: *wuyc@bao.ac.cn*

Magnetic field is one of the most important physical quantities in solar physics. Mg I 12.32 μm line is very sensitive to magnetic field, thus is suitable for measuring solar magnetic field. We employed the radiative transfer code RH 1.5D to synthesize the spectra of Mg I 12.32 μm line based on a model atmosphere computed with the magnetohydrodynamic numerical code MURaM. We analysed Mg I 12.32 μm line's features at various locations and the relationships between these features and physical parameters in model atmosphere. We also use an inversion code STiC to inverse synthesized spectra of Mg I 12.32 μm line and get physical parameters of the atmosphere.