

Highlights from the Sunrise III 2024 Campaign

Korpi-Lagg, Andreas¹, Gandorfer, Achim¹, Solanki, K. Sami¹, Feller, Alex¹, del Toro Iniesta, Jose Carlos², Orozco, David², Katsukawa, Yukio³, Berkefeld, Thomas⁴, Bernasconi, Pietro⁵, Riethmüller, Tino¹, H. N. Smitha¹, and the Sunrise Iii Team

¹ MPI for Solar system Research, Göttingen, Germany

² Instituto de Astrofísica de Andalucía, Granada, Spain

³ National Astronomical Observatory of Japan, Tokyo, Japan

⁴ Institut für Sonnenphysik (KIS), Freiburg, Germany

⁵ Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA

contact e-mail: *lagg@mps.mpg.de*

The Sunrise III 2024 flight was highly successful. Over the course of a 6.5-day journey in the stratosphere, departing from Kiruna, Sweden, and arriving in northwestern Canada, the balloon-borne solar observatory captured a diverse range of solar targets at the diffraction limit of its 1-meter telescope. Three instruments operated in synchronized mode to collect spectropolarimetric data in the near-UV (Sunrise UV Spectropolarimeter and Imager, SUSI), the visible (Tunable Magnetograph, TuMag), and the near-IR (Sunrise Chromospheric Imager and Polarimeter, SCIP). In this poster, we present a first glimpse into the high quality and variety of the data obtained: SUSI reveals 50-kilometer-sized structures in the solar photosphere, TuMag showcases a selection of the numerous targets observed, and SCIP demonstrates the high polarimetric sensitivity in generating maps of both the photosphere and chromosphere.